Disassembling a 16-bit mini handheld video arcade revealed a fairly uncomplex interior with most of the functionality being handled by a blob chip on a single-sided PCB. Despite the simplicity, the impressive design manages to fit 156 games into flash storage on a multi-layered daughter board, which helps simplify the main board's design. While not as hackable as hoped, the teardown provided an interesting glimpse into the device's construction.
As an enthusiast of the ESP32-S3's versatility, I recognized the importance of understanding which pins are best to avoid. Inspired by the Random Nerds page for the classic ESP32, I've created a comprehensive pinout for the ESP32-S3 available on GitHub. The community's input is highly valued – suggestions and corrections are welcome to refine this resource into a dynamic guide for developers.
In a thrilling DIY endeavour, I attempted to build the most minimalist ESP32 dev board possible. Diving deep into the schematic of the ESP32 S3 WROOM module, I chopped out the non-essentials and whittled our needs down to bare bones. The experiment saw me juggling USB data lines and voltage regulators, waving goodbye to an array of capacitors and connectors and boldly embracing the simplicity of direct connections. Despite a few hitches, the miniature Frankenboard came alive, proving that sometimes less is more...at least in the world of microcontrollers.
In this blog post, I explore the TS80P soldering iron, a tool that has been generating buzz. One of the highlights is that its firmware can be flashed with an open source system called IronOS. Here, I share my process of flashing the TS80P with IronOS and testing it out on a Raspberry Pico W. Please note, a Quick Charge or Power Delivery supporting power supply is needed for this iron. While running some tests, I observed that using a fast charger can heat this iron up twice as fast as using an Apple charger. Also, flashing the firmware is...